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Abstract

We describe and evaluate two numerical approaches for solving the equations of linear elasticity on composite over-
lapping grids. In the first approach we solve the elastodynamic equations posed as a second-order system (SOS)
using a conservative finite difference approximation. In the second approach we solve the equations written as a
first order system (FOS) using a high-order characteristic-based (Godunov) finite-volume method. We describe the
approximations to the equations and boundary conditions for each scheme. We analyse the stability of the first-order
and second-order scalar wave equations on an overlapping grid and show that non-dissipative approximations can
have unstable modes with growth rates proportional to the inverse of the mesh spacing. We show that the addition of
a high-order filter can be used to stabilize the SOS scheme while the upwinding nature of the Godunov scheme nat-
urally stabilizes the FOS scheme. We discuss the use adaptive mesh refinement with both approaches. The accuracy
of the two schemes is compared and verified using the method of analytic solutions and for problems with known
solutions. A posterior error estimates for a complex example of a three-dimensional plate with holes provides an
additional verification of the second-order accuracy of the schemes. Performance results comparing the two schemes
are also presented.
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1. Introduction

The simulation of the deformation of solids is an important and well established field. Approaches based on
Galerkin approximations and the finite element method are widely used. Finite difference, finite volume and
spectral element methods are also commonly used. In this work we consider the solution to solid mechanics
problems using composite overlapping grids and adaptive mesh refinement (AMR). An overlapping grid
consists of a collection of structured grids that cover a domain and overlap where they meet [1]. Solution
values on different grids are matched by interpolation at the overlapping boundaries. Overlapping grids
can be used to develop efficient methods through the use of structured grids and Cartesian grids. They can
provide smooth, boundary-fitted grids for complex geometry which is important in providing accurate results
for wave propagation problems. Overlapping grids have been used to solve a wide class of problems. They
have primarily been used for fluid dynamics (see [2,3] and the references therein) but more recently have
also been applied to electromagnetics [4]. Overlapping grids were utilized for modeling linear elastic waves
in [5–7]. The current work, however, appears to be the first careful analysis of the accuracy and stability of
using general curvilinear overlapping grids for elastodynamic problems.

We describe and compare two numerical approaches for solving the equations of linear elasticity on
overlapping grids. In the first approach, denoted as SOS-C, we solve the equations posed as a second-
order-system (SOS) for the displacement using a conservative finite difference approximation. On a single
curvilinear grid the SOS-C scheme is stable, non-dissipative and energy preserving. In the second approach,
denoted by FOS-G, we solve the equations written as a first-order-system (FOS) for the displacement,
velocity and stress using a high-order finite-volume (Godunov) method. The two schemes are compared
in terms of accuracy, stability and performance. The stability of the schemes on overlapping grids is also
studied through the normal mode analysis of some model problems.

It is known that finite difference methods for the SOS may have difficulty at traction (stress free) bound-
aries when the ratio λ/µ of the Lamé parameters becomes large. Application of the traction boundary
conditions, which involve normal and tangential derivatives of the displacement, must be done with care
to avoid numerical instabilities. On a single grid, the SOS-C scheme uses an approximation at traction
boundaries that is always stable. The basic SOS-C scheme is neutrally stable with no dissipation. This is
an attractive property for wave propagation problems but also means that small changes to the numerical
approximation could result in an unstable scheme. Indeed, the interpolation equations on overlapping grids
will in general excite an instability in the SOS-C scheme. In addition, when narrow curvilinear grids are used
near physical boundaries, an unstable mode generated from the interpolation equations may be amplified
due to interactions with the nearby boundary. This instability is stronger than the one created from an
isolated interpolation boundary as shown by computations and by our analysis (section 6). We show that
the addition of a high-order low-pass filter can be used to stabilize the SOS-C scheme in both these cases.
The FOS-G scheme, by comparison, does not have difficulty in treating traction boundaries, even as the ratio
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of λ/µ becomes large. This is related to the fact that the first-order-system directly evolves the components
of the stress and thus the traction boundary condition acts more as a Dirichlet boundary condition.

The adaptive mesh refinement (AMR) technique dynamically adds refinement grids as the solution evolves
to regions where more resolution is required. This approach is particularly effective when there are small
regions in the domain where greater resolution is required. We apply the AMR technique with the SOS-C
and FOS-G schemes. Refinement grids are added in the parameter space of each base grid of the overlapping
grid. Grids are regenerated every few time steps. An example of a compression wave diffracting around a
cylindrical void is used to illustrate the use of AMR.

An outline of the paper now follows. In Section 2 we present the governing equations and boundary
conditions. A brief description of the overlapping grid approach in provided in Section 3. The SOS-C and
FOS-G numerical schemes are described in Section 4 and approximations to boundary conditions in Section 5.
Aspects of the stability of our approximations on overlapping grids are considered in Section 6 The AMR
approach is discussed in Section 7. Numerical results are presented in Section 8. A variety of tests are
considered to verify the accuracy of the two approaches. The computational performance of the schemes are
also compared. The final section gives concluding remarks.

2. Governing equations

Consider an elastic solid that at time t = 0 occupies the domain Ω ⊂ R
nd in nd = 2 or nd = 3 space

dimensions. Let u(x, t), with components ui(x, t), denote the displacement of a material particle originally
located at position x ∈ R

nd and let σ(x, t) denote the Cauchy stress tensor with components σij(x, t). It is
assumed that the solid is a homogeneous isotropic material, and that the evolution of the displacement is
governed by the equations of linear elasticity given by (with Einstein summation convention),

ρ0
∂2ui

∂t2
=
∂σij

∂xj
+ ρ0fi, x ∈ Ω, t > 0, i = 1, 2, . . . nd, (1)

where ρ0 is the density of the material, f is an acceleration due to an applied body force, and the components
of σij are given by

σij = λ (εkk) δij + 2µεij , εij =
1

2

(
∂ui

∂xj
+
∂uj

∂xi

)
. (2)

Here, εij is the (linear) strain tensor, δij is the identity tensor, εkk =
∑

k εkk = ∇ · u is the divergence, and
λ and µ are the Lamé parameters, related to Young’s modulus E and Poisson’s ratio ν by

µ =
E

2(1 + ν)
, λ =

νE

(1 + ν)(1 − 2ν)
. (3)

The initial conditions for the second-order-system (1) are

u(x, 0) = u0(x),
∂u

∂t
(x, 0) = v0(x), x ∈ Ω, (4)

where u0(x) and v0(x) are the initial displacement and velocity of the solid, respectively. The boundary
conditions for (1) are applied for x ∈ ∂Ω and may take various forms. The boundary conditions considered
in this paper are

u = gd(x, t), displacement boundary conditions, (5)

n · σ = gt(x, t), traction boundary conditions, (6)

n · u = gs(x, t)

n · σ · τm = gs,m(x, t)



 slip-wall boundary conditions. (7)

Here, n is the unit outward normal on the boundary, τ m, m = 1, . . . , nd −1 are unit and orthogonal tangent
vectors, gd(x, t), gt(x, t), are the given displacement and traction at the boundary, respectively, while gs(x, t)
and gs,m(x, t) define the slip wall motion.
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We also consider the equations in (1) and (2) written as a first-order system

∂ui

∂t
= vi,

∂vi

∂t
=

1

ρ0

∂σij

∂xj
+ fi, (8)

∂σij

∂t
= λ (ε̇kk) δij + 2µε̇ij ,

where v(x, t) is the velocity and the components of the rate of strain tensor ε̇ij are given by

ε̇ij =
1

2

(
∂vi

∂xj
+
∂vj

∂xi

)
.

The initial conditions for ui(x, 0), vi(x, 0) and σij(x, 0) for the FOS are derived from the initial conditions (4)
for the SOS. The governing equations, whether written as a first or second-order system, are hyperbolic
and represent the motion of elastic waves in the solid. For the SOS, the characteristic wave speeds are ±cp

and ±cs where the pressure and shear wave speeds are given by

cp =

√
λ+ 2µ

ρ0
, cs =

√
µ

ρ0
. (9)

The FOS has the additional wave speed of 0.

3. Overlapping grid framework

An overlapping grid, G, consists of a set of structured component grids, {Gg}, g = 1, . . . ,N , that cover
the domain Ω and overlap where the component grids meet. Typically, boundary-fitted curvilinear grids are
used near the boundaries while one or more background Cartesian grids are used to handle the bulk of the
domain. Each component grid is a logically rectangular, curvilinear grid in nd space dimensions (nd = 2 or
3), and is defined by a smooth mapping from parameter space r (the unit square or cube) to physical space
x,

x = Gg(r), r ∈ [0, 1]nd , x ∈ R
nd .

This mapping is also used to define the location of grid points at any desired resolution as required when
the grid is refined (see Section 7).

Figure 1 shows a simple overlapping grid consisting of two component grids, an annular boundary-fitted
grid and a background Cartesian grid. The top view shows the overlapping grid while the bottom view
shows each grid in parameter space. In this example the annular grid cuts a hole in the Cartesian grid
so that the latter grid has a number of unused points which are marked as open circles. The other points
on the component grids are marked as discretization points (where the PDE or boundary conditions are
discretized) and interpolation points. Solution values at interpolation points are generally determined by
a tensor-product Lagrange interpolant in the parameter space of the donor grid. Ghost points are used to
facilitate the discretization of boundary conditions.

The classification of points on a grid into discretization, interpolation and unused points is determined
by an overlapping grid generator. We use the Ogen grid generator [8]. Ogen takes as input a set of over-
lapping component grids along with a classification of the boundaries of each grid as a physical boundary,
an interpolation boundary or a periodic boundary. Unused points are determined by Ogen using physical
boundaries to mark points exterior to the domain following a hole-cutting algorithm. The remaining points
are classified as either discretization points or interpolation points.

4. Discretization of the governing equations

The discretization of the governing equations is carried out on a uniform grid in the unit computational
space r ∈ [0, 1]nd . The mapping x = Gg(r) defines the grid in physical space x, and an exact changes
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Fig. 1. The top view shows an overlapping grid consisting of two structured curvilinear component grids. The bottom views
show the component grids in the unit square parameter space. Grid points are classified as discretization points, interpolation

points or unused points. Ghost points are used to apply boundary conditions.

of variables is made to express the governing equations in computational space. A discretization is then
performed on the mapped equations. This is described for the second and first-order systems in the two
subsections below.

4.1. Second-order system

In this section we describe the discretization of the governing equations (1) posed as a second-order system.
The equations (1)-(2) for the second-order-system are discretized in conservation form. Given the mapping,
x = G(r), defining the grid transformation, the equations can be written in conservation form

ρ0
∂2ui

∂t2
=

1

J

∂

∂rj
(J
∂rj
∂xk

σki) + ρ0fi,

σij = λεkkδij + 2µεij ,

εij =
1

2

(∂rk
∂xj

∂ui

∂rk
+
∂rk
∂xi

∂uj

∂rk

)
,

where J = det(∂x/∂r) is the Jacobian of the mapping. These equations can be written succinctly as

ρ0
∂2ui

∂t2
=

1

J

∂

∂rj

(
Aijkl

∂uk

∂rl

)
+ ρ0fi. (10)

The equations in (10) can be discretized to second-order accuracy using a compact stencil (stencil width
of three in each direction). Equation (10) contains two types of terms, terms with a mixed second-order
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derivative and terms with an unmixed second-order derivative. These two types of terms are approximated
using

∂

∂rj

(
ai
∂uk

∂rj

)
≈ D+j

(
(A−jai)D−ju

n
k,i

)
, (11)

∂

∂rj

(
ai
∂uk

∂rl

)
≈ D0j

(
aiD0lu

n
k,i

)
, j 6= l, (12)

where un
k,i ≈ uk(xi, t

n), tn = n∆t, and where D+j , D−j and D0j are the usual forward, backward and central

difference approximations in the jth coordinate direction and A−j is the averaging operator. For example,

D+1uk,i = (un
k,i1+1,i2,i3 − un

k,i)/(∆r1),

D−2uk,i = (un
k,i − un

k,i1,i2−1,i3)/(∆r2),

A−3uk,i = 1
2 (un

k,i1,i2,i3 + un
k,i1,i2,i3−1).

For second-order accuracy we discretize the equations in time with a centered scheme,

∂2uk

∂t2
≈
un+1

k,i − 2un
k,i + un−1

k,i

∆t2
, (13)

and evaluate the forcing term as fn
k,i = fk(xi, t

n). By using these approximations, together with special
one-sided approximations at traction boundaries, the overall scheme is stable, second-order accurate, non-
dissipative and preserves a discrete approximation to the energy on a single curvilinear grid. See Appelö and
Petersson [9] for further details.

The basic conservative scheme has no-dissipation. On an overlapping grid, the interpolation equations
may introduce pertubations to the approximation that can cause instablilties as analyzed in Section 6. To
damp this instability we either add an artificial dissipation or apply a high-order low-pass filter. The artificial
dissipation term is added to the right hand side of equation (10). In continous terms it takes the form

D2du = −αd(−h2∆)d ∂u

∂t
,

where αd ≥ 0 is a constant and h is some measure of the grid spacing. The actual discrete approximation is
defined in terms of undivided differences

D2d
h un

i = −αd

nd∑

d=1

(−∆+d∆−d)
d

(
un

i − un−1
i

∆t

)
, (14)

where ∆+d = ∆rdD+d and ∆−d = ∆rdD−d are the un-divided forward and backward difference operators,
respectively. For a second-order approximation we can use a second-order dissipation 2d = 2 or a fourth-
order 2d = 4. In many cases the choice αd = O(1) (αd = 1 for example) will lead to a stable numerical
solution. However in more difficult cases as discussed in section (6) it is necessary to increase the coefficient
as the mesh is refined, αd ∝ 1/∆r. For these difficult cases we have found that the use of a high-order filter
is generally better (see Section 6.1.2). The high-order low-pass filter is applied to the grid function un

i to
obtain a new filtered solution un,∗

un,∗ = F2d(u
n
i ), (15)

F2d(u
n
i ) = un

i − βd

nd∑

d=1

(−∆+d∆−d)
dun

i . (16)

The filter can be applied every time step or every few time steps. The coefficient βd can be chosen so that
the filter eliminates the most oscillatory grid function ui = (−1)i1(−1)i2(−1)i3 . This plus-minus wave is
often the most unstable mode. In this case

βd =
1

4dnd
.

If the filter is applied at every time step, then the error introduced is O((∆r)2d/∆t). Choosing a fourth-order
filter, 2d = 4 will retain the second-order accuracy of the scheme. We have found that a sixth-order filter,
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Fig. 2. Transfer function for the high-order filter. The plus-minus wave, which corresponds to ξ/π = 1, is completely damped
by the filter.

2d = 6 is an even better choice since it is effective at stabilizing the scheme but results in little dissipation
to the resolved modes of the computed solution. The fourth and sixth order filters require special treatment
near boundaries due to their wide stencils. Rather than develop special one-sided approximations (as done
for example in [10]) we instead assign values of the solution at extra ghost points. For the fourth-order filter
we extrapolate un

i on a second-ghost line to third-order (e.g. D3
+ju

n
i = 0). On interpolation boundaries we

also use third-order extrapolation to set values at the unused points that lie next to interpolation points.
The sixth-order filter is implemented in two stages. In the first stage we extrapolate a second-ghost line to
third-order and then evaluate and save di = (−∆+d∆−d)

2un
i . In the second stage we set di to zero at ghost

points and evaluate F6(u
n
i ) = un

i − β6(−∆+d∆−d)di. The Fourier transform of the one-dimensional filter
(transfer-function) is shown in figure 2 and given by

F̂2d(ξ) = 1 − sin2d(ξ/2), |ξ| ≤ π, (17)

where ξ is the normalized wave-number. It can be seen that the sixth order filter has little effect on the low
frequency components of the solution while strongly damping the high frequencies. We note that another
good filter might be the compact filters proposed by Lele and others [11].

4.2. First-order system

In this section, we consider a discretization of the first-order system of equations for elastic waves in nd

space dimensions. Let w denote the vector of all dependent variables, w = [v σ u]T . In Cartesian coordinates
the FOS (8) can then be written in the form

∂w

∂t
+

nd∑

α=1

∂

∂xα

(
A(α)w

)
= h, (18)

for matrices A(α) which depend on ρ0, λ and µ and where h = h(x, t) denotes the forcing. We note that for
variable coefficients, λ(x) and µ(x), the forcing h will also depend on w. Question: we don’t need to deal
with it here but I wonder how variable coefficients would be treated? The system could be
put in conservation form plus a source term in which case h = h(w,x, t). As mentioned previously,
each component grid in the overlapping grid is defined by a mapping x = G(r). In computational space, r,
the equations (18) become
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∂

∂t
w +

1

J

nd∑

α=1

∂

∂rα
f (α)(w) = h, (19)

f (α)(w) = J




nd∑

j=1

∂rα
∂xj

A(j)


w, (20)

where J = det(∂x/∂r) is the Jacobian of the mapping. The Jacobian and all grid metrics are assumed to
be known smooth functions. The discretization of the mapped equations in (19) is performed on a uniform
grid with mesh spacings ∆rα for α = 1 . . . nd. Following the approach discussed in [], ref needed here we
use

wn+1
i = wn

i − ∆t

Ji

nd∑

α=1

D+α f
(α)

i− 1

2
êα

+ ∆th
n+1/2
i , (21)

where wn
i is an approximation of w at the grid point ri and time tn, ∆t is a global time step used for all

grids at tn, f
(α)
i are numerical approximations to the fluxes defined in (20), h

n+1/2
i is an approximation to

the source term, and êα ∈ R
nd is the unit vector in the α-direction. For use below, define the shift operator

in the α-direction, Eα, by Eβ
α wi = wi+βêα

.
There are many possible choices for the numerical fluxes in (20). For nonlinear systems the exact Godunov

flux can be expensive to compute. However, for the case of linear elasticity, the exact Godunov flux requires
only the solution to a small linear system, which is computationally efficient, and so we use it. For the
α-direction in index space this flux is given by

f
(α)

i+ 1

2
êα

=
1

2

(
f (α)(wR) + f (α)(wL)

)
− E

1

2

α

[
Ji

2

nc∑

m=1

Γ
(m)
α,i |K

(m)
α,i |z

(m)
α,i

]
, (22)

where (K
(m)
α , z

(m)
α ), m = 1, 2, . . . , nc, are the eigenvalues and eigenvectors belonging to the matrix

Cα = ZαKαZ
−1
α =

nd∑

j=1

∂rα
∂xj

A(j),

Γ
(m)
α is the mth component of the vector Z−1

α (wR −wL), and nc = 2nd + nd
2 is the number of components

in the solution vector w. Values defined on the faces, i+ 1
2 êα are are determined by averaging, for example,

Ji+ 1

2
êα

= 1
2 (Ji+êα

+ Ji). (check me.)

The numerical flux defined in (22) with left and right states taken directly from grid values on either side
of a given cell face is in general first-order accurate. Second-order accuracy can be achieved (for smooth
solutions) if modified values for the left and right states are used. For example, consider the cell face with
index i + 1

2 êα and define the vectors

an
α,i = L

(
Z−1

α,i∆−αwn
i , Z

−1
α,i∆+αwn

i

)
, (23)

where L(·, ·) is a slope-limiter function which is applied componentwise. For the Euler equations of gas
dynamics a common choice is the minmod (minimum modulus) limiter. For the current work, however, we
use the unlimited scheme defined with L(b, c) = (b+ c)/2. The wave strengths in (23) are used to obtain the
following values for the left and right states about the cell face i + 1

2 êα

wL = wn
i +

1

2
Zα,i aα,i −

nd∑

j=1

∆t

2∆rj
Zj,iKj,i a

n
j,i +

∆t

2
hn

i ,

wR = Eα


wn

i − 1

2
Zα,i aα,i −

nd∑

j=1

∆t

2∆rj
Zj,iKj,i a

n
j,i +

∆t

2
hn

i


 .

(24)

The values in (24) are used to compute f
(α)

i+ 1

2
êα

, and similar formulas give left and right states which may be

used to compute the other numerical fluxes in (21). Finally, we note that the slope-limited wave strengths
in (23) are also used to obtain the center update
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w
n+

1
2

C = wn
i −

nd∑

j=1

∆t

2∆rj
Zj,iKj,i a

n
j,i +

∆t

2
hn

i . (25)

The displacements are then advanced according to

un+1
i = un

i + ∆tv
n+

1
2

C . (26)

This completes the description of the numerical scheme for the first-order system.

5. Boundary Conditions

An important issue in the discretization of PDEs is the numerical treatment of boundary conditions. In
this section, we describe our implementation of the boundary conditions (5)-(7) for the second-order and
first-order systems.

The boundary conditions are applied after the solution has first been advanced at all interior and boundary
points using the algorithm outlined previously in Sections 4.1 and 4.2. Note that the interior equations are
advanced at boundary points, providing preliminary values of the solution on the boundary. Some of these
boundary values will be over-written by the boundary conditions but some will not. To be specific, we
consider applying the boundary conditions to the face, r1 = 0 with i1 = 0. Let j = (i2, i3) denote the indicies
for the tangential directions. We use the boundary conditions to assign appropriate values of the solution
on the boundary, u0,j, the first ghost line u−1,j, and for the FOS-G scheme the second ghost line, u−2,j.

5.1. Boundary conditions for the second-order system

The displacement boundary conditions (5) are straightforward to implement for the SOS, by setting

un
i = gd(xi, t

n),

for all points i on the boundary face. The values at ghost points, needed by the filter for e.g., are obtained
by extrapolation, using the third-order extrapolation formula given in (28). The traction boundary condi-
tions (6) require more care. We use the traction boundary conditions to assign values of the solution on the
first ghost line u−1,j. The values of the solution on the boundary are obtained using the interior equations.
The traction boundary conditions define Neumann-like conditions on u. For example, in the two-dimensional
Cartesian case with a boundary on x = 0 these are

∂u1

∂x
= − λ

λ+ 2µ

∂u2

∂y
,

∂u2

∂x
= −∂u1

∂y
.

These conditions can be approximated with centered difference approximations and used to give equations for
u−1,j. We have found that these approximations will lead to an accurate scheme that is stable for moderate
values of the ratio λ/µ but will generally be unstable for large values of this ratio. An approximation that
is stable for all ratios can be determined by the summation-by-parts approach [12] which leads to a scheme
with an energy estimate. The conclusion is that the centered approximation (12) to the mixed derivatives

∂

∂rj

(
ai
∂uk

∂rl

)
≈ D0j

(
aiD0lu

n
k,i

)
, j 6= l,

should be changed at the boundary i1 = 0 by replacing the centered operator D01 by the one-sided operator
D+1. This change, together with centered approximations to the traction conditions (6), will give a stable,
second-order accurate, self-adjoint scheme. See [9] for full details.

The slip-wall boundary condition (7) combines aspects of the displacement and traction boundary condi-
tions. The normal component of the displacement is given on the boundary,

n · un
i = n · gd(xi, t

n).
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The tangential components of the traction boundary condition define nd −1 Neumann-like equations for the
tangential components of the displacement on the ghost line. The normal component of the displacement
on the ghost line is extrapolated .

5.2. Boundary conditions for the first-order system

Application of the boundary conditions for the first-order-system is somewhat more involved than for the
second-order system due to the increased number of dependent variables. Let w denote the vector of all
dependent variables, w = [v σ u]T and denote the stress-strain relation by

σ = S(∇u) = λ∇ · u + µ(∇u + ∇uT ). (27)

There are three types of conditions we apply. The first type are the analytic boundary conditions such
as u0,j = gd. The second type are compatibility conditions that are derived from the governing equations
and the boundary conditions. An example of a compatibility condition is ∇h · σ0,j = ρg̈d which is derived
from the governing equation (1) and the analytic boundary condition (5). The third type are extrapolation
conditions. We use a third-order extrapolation operator given by

w−1,j = E(3)
+1w0,j = 3w0,j − 3w1,j + w2,j. (28)

Displacement boundary condition

stage condition assigns

1a u0,j = gd u0,j

1b v0,j = ġd v0,j

2 Extrapolate w
−1,j w

−1,j

3 ∇h · σ0,j = ρg̈d n · σ
−1,j

4 Extrapolate w
−2,j w

−2,j

Traction boundary condition

stage condition assigns

1 n · σ0,j = gt n · σ0,j

2 Extrapolate w
−1,j w

−1,j

3a n · S(∇hu0,j) = gt u
−1,j

3b n · S(∇hv0,j) = ġt v
−1,j,

4 τm · σ0,j = τ · S(∇hu0,j) τm · σ0,j

5 Extrapolate σ
−1,j σ

−1,j

6 Extrapolate w
−2,j w

−2,j

Slip wall boundary condition

stage condition assigns

1a n · u0,j = gs n · u0,j

1b n · v0,j = ġn n · v0,j

1c n · σ0,j · τm = gs,m n · σ0,j · τm

2 Extrapolate w
−1,j w

−1,j

3a n · S(∇hu0,j) · τm = gt,m τm · u
−1,j

3b n · S(∇hv0,j) · τm = ġt,m τm · v
−1,j,

3c σ0,j = S(∇hu0,j) σ0,j

5 Extrapolate σ
−1,j σ

−1,j

6 Extrapolate w
−2,j w

−2,j

Table 1
Implementation of the displacement, traction and slip-wall boundary conditions for the first-order-system. The values of the

solution on the boundary and ghost points are assigned in the order given.

Table 1 outlines the steps we take (in the order given) to apply the discrete versions of the boundary
conditions. Consider, for example, the condition ∇h ·σ0,j = ρg̈d from stage 3 of the displacement boundary
condition. This equation is discretized to second-order-accuracy using the conservative approximation,
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∇h · σi =
1

Ji

nd∑

m=1

D0,m

(
∇xrm · σi

)
= ρg̈d,

centered on the boundary point i = (0, j). These nd equations can be solved for the nd values n · σ−1,j of
the normal dotted with the stress on the ghost points (note that n = ∇xr1/|∇xr1|). The values of σ−1,j are
then adjusted so that these conditions are satisfied.

6. Stability at overlapping grid interfaces with nearby boundaries

In this section we analyze some aspects of the stability of our schemes on overlapping grids. A numerical
scheme that is stable on a single grid may become unstable on an overlapping grid. This is especially a
problem for neutrally stable schemes that have no dissipation. In practice we often have a narrow curvilinear
grid next to boundaries. As the boundary grid is refined we may keep fixed the number of grid points, N ,
in the normal direction to the boundary. This can be useful from an efficiency standpoint as the relative
number of grid points on the more efficient Cartesian grids will grow. We will see that the case of fixed N
is more difficult than the case of increasing N since instabilities generated from the interpolation equations
at grid overlaps can be made worse by the presence of a nearby boundary.

The equations of linear elasticity are a coupled set of wave equations. As a model problem we consider the
solution to a scalar wave equation in one-dimension. We study both the second-order wave equation and the
first-order wave equation. We analyze approximations to these equations on a one-dimensional overlapping
grid. We show that non-dissipative centered approximations are unstable for certain values of the overlap
parameters (e.g., interpolation coefficients) and that the growth rates of these unstable modes increase as
the mesh is refined. The centered schemes can be stabilized with artificial dissipation provided the coefficient
of the artificial dissipation also increases as the mesh is refined. The Godunov scheme for the first-order
wave equation is found to have enough inherent dissipation to be stable without requiring any additional
dissipation.

The stability of hyperbolic problems on overlapping grids has been previously considered by various
authors. The case of adaptive mesh refinement, a special case of an overlapping grid, has been considered
by, for example, Browning, Kreiss and Oliger [13] and Ciment [14]. Berger [15] considered the stability of
the first order wave equation with mesh refinement in space and time. Starius [16] studied the stability of
the Lax-Wendroff scheme for the first order wave equation on a semi-infinite one-dimensional overlapping
grid. Reyna [17] also analyzed the first order wave equation on an overlapping grid and showed that the
leap-frog scheme could be unstable. Pärt-Enander and Sjögreen [18] considered the stability of conservative
interpolation on overlapping grids. Olsson and Peterson [19] studied the first-order wave equation and showed
the existence of a whole class of unstable modes. They also demonstrated numerically that the growth rates
of the unstable modes increased as the mesh was refined, although quite slowly.

We extend these previous works to the case of the second-order wave equation and also present some new
results for the first-order wave equation. We analyze in particular the case when the number of points, N ,
in the boundary grid remains fixed as the mesh is refined and show that the growth rate of unstable modes
increases proportional to 1/h where h is the mesh size.

6.1. Stability of the second-order wave equation

We consider solving the second-order scalar wave equation in one space dimension for the unknown u =
u(x, t) on the semi-infinite interval Ω = (−∞, b],

∂2u

∂t2
=
∂2u

∂x2
, x ∈ (∞, b), t > 0,

u(x, 0) = u0(x), x ∈ (∞, b),

u(b, t) = g(t), ‖u(·, t)‖ <∞, t > 0.

11



Here the initial and boundary conditions are assumed consistent so that u0(b) = g(0). We solve this equation
on an overlapping grid for the semi-infinite interval is shown in Fig. 3. The solution is approximated by the

two grid functions u
(m)
j (t) ≈ u(x

(m)
j , t), on the component grids x

(m)
j = x

(m)
a + jhm, for m = 1, 2. The grid

spacings are hm > 0 and let h = min(h1, h2). This overlapping grid is representative of the grids we generally
use where there is a narrow boundary fitted grid with a fixed number of grid points in the direction normal
to the boundary (i.e. N is constant as the mesh is refined) next to a large background grid.

· · · u
(2)
−1 u

(2)
0 u

(2)
1 u

(2)
q−1 u

(2)
q

u
(1)
0 u

(1)
1 u

(1)
p u

(1)
p+1u

(1)
p+2

· · · u
(1)
N

Fig. 3. One-dimensional overlapping grid for the semi-infinite problem.

We consider approximations that are continuous in time and discrete in space. A centered approximation
is

∂2u
(1)
j

∂t2
=
u

(1)
j+1 − 2u

(1)
j + u

(1)
j−1

h2
1

, j = 1, 2, 3, . . . , N − 1 (29)

∂2u
(2)
j

∂t2
=
u

(2)
j+1 − 2u

(2)
j + u

(2)
j−1

h2
2

, j = q − 1, q − 2 (30)

with initial conditions and boundary conditions

u
(1)
j = u0(x

(1)
j ), j = 0, 1, 2, 3, . . . , N, (31)

u
(2)
j = u0(x

(1)
j ), j = q, q − 1, q − 2, . . . , (32)

u
(1)
N = g(t), (33)

and interpolation conditions,

u
(1)
0 =

r∑

k=0

aku
(2)
k , u(2)

q =
r∑

k=0

bku
(1)
p+k. (34)

Here r + 1 is the number of points in the interpolation stencil. The interpolation coefficients ak and bk are
given by Lagrange interpolation, where for example,

a0 = (1 − α), a1 = α, (linear interpolation, r = 1),

a0 = 1
2 (1 − α)(2 − α), a1 = α(2 − α), a2 = 1

2α(α− 1), (quadratic interpolation, r = 2),

α = (x
(1)
0 − x

(2)
0 )/h2.

The interpolation is restricted to be centered so that α ∈ [ 1
2 (r−1), 1

2 (r+1)]. The formulae for bk are defined

in a similar fashion in terms of β = (x
(2)
q − x

(1)
p )/h1.

Definition 1 We will say that the solution to scheme (29)-(34) is stable if the solutions remain uniformly
bounded in time.

We note that more generally one can allow stable solutions that have bounded growth in time for any fixed
time interval, but for the wave equation this more restrictive definition will be used. To analyze the stability
of this approximation, we Laplace transform in time with dual variable s. From the general normal-mode
theory [12] we are led to analyze the following eigenvalue problem for the semi-discrete, Laplace transformed
solution,
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(sh1)
2ũ

(1)
j = ũ

(1)
j+1 − 2ũ

(1)
j + ũ

(1)
j−1, j = 1, 2, 3, . . . , N − 1, (35)

(sh2)
2ũ

(2)
j = ũ

(2)
j+1 − 2ũ

(2)
j + ũ

(2)
j−1, j = q − 1, q − 2, . . . , (36)

ũ
(1)
N = 0, |ũ(2)

j | <∞, (37)

ũ
(1)
0 =

r∑

k=0

akũ
(2)
k , ũ(2)

q =

r∑

k=0

bkũ
(1)
p+k. (38)

A necessary condition for stability, known as the Godunov-Ryabenkii condition, is that there be no solutions
to the eigenvalue problem with Re(s) > 0 as indicated by the following theorem.

Theorem 1 The scheme (29)-(34) is unstable if there exist solutions to the eigenvalue problem (35)-(38)
with Re(s) > 0.

Proof. If there is a solution to the eigenvalue problem (35)-(38) then there will be a homogeneous solution
to (29)-(34) which grows like est. If Re(s) > 0 this solution will not be bounded in time 2.

The next lemma follows from the fact that the eigenvalue problem only depends on the product shm.

Lemma 1 If there is a solution to the eigenvalue problem (35)-(38) for given values (s, h1, h2, α, β,N), then
for any γ > 0 there will be another solution (on a different grid) with values (sγ, h1/γ, h2/γ, α, β,N) .

The growth rate on the new grid will be eγRe(s)t. Therefore if there exists a solution to the eigenvalue problem
with Re(s) > 0 then we can find solutions on finer grids that grow more rapidly. This result indicates that
if there are unstable modes for one mesh size then as the mesh is refined there will be unstable modes with
growth rates proportional to 1/hm, i.e., |u(m)

j | ∼ e(γ/hm)t, with γ > 0.

To solve equations (35) and (36) we make the ansatz ũ
(m)
j = Cm(s)κj for some bounded and spatially

constant Cm(s). It follows that κ will satisfy

κ2 − (2 + (shm)2)κ+ 1 = 0

with roots

κ± = 1 + z/2 ±
√
z + z2/4

where z = (shm)2. When investigating stability we are interested in the root κ∗ = κ∗(sh) with |κ∗| ≤ 1 for
Re(s) > 0. If sh = ξ + iη, ξ, η ∈ R, then this root is given by

κ∗(sh) =

{
1 + z/2 −

√
z + z2/4, for η2 ≤ ξ2 + 2,

1 + z/2 +
√
z + z2/4, for η2 > ξ2 + 2,

(39)

−π/2 ≤ arg(
√
z + z2/4) < π/2. (40)

This last equation is valid for ξ > 0 (the correct branch cut for ξ = 0 must be obtained from ξ → 0, ξ > 0).
The modulus of this root is plotted in Fig. 4. Note that |κ∗(sh)| = 1 for sh = iη with −2 ≤ η ≤ 2. Also note
that κ∗(sh) ∼ 1/z as z → ∞ with Re(s) > 0.

The solution to equations (35) and (36) satisfying the boundary conditions is thus of the form

ũ
(1)
j = A(κj

1 − κ2N−j
1 ), j = 0, 1, 2, . . . , N

ũ
(2)
j = Bκq−j

2 , j = q, q − 1, q − 2, . . . ,

where κm = κ∗(shm), m = 1, 2, are the roots with |κm| ≤ 1 for Re(s) > 0 (see equation 39). Imposition of
the interpolation equations implies

A(1 − κ2N
1 ) = B

r∑

k=0

akκ
q−k
2 ,

B = A
r∑

k=0

bk

(
κp+k

1 − κ
2N−(p+k)
1

)
.
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Fig. 4. Contours and surface plot of |κ| from the second-order wave equation for the root κ∗(sh) with |κ| ≤ 1 for Re(s) > 0.

The modulus of κ∗ is one along the imaginary axis for Im(sh) ∈ [−2, 2] and decays to zero as Re(sh) → ∞.

The condition for non-trivial solutions is that there be zeros of the following determinant for Re(s) > 0,

Gs = det




κ2N
1 − 1

r∑

k=0

akκ
q−k
2

r∑

k=0

bk(κp+k
1 − κ

2N−(p+k)
1 ) −1



.

Whence

Gs(s) = 1 − κ2N
1 −

(
r∑

k=0

akκ
q−k
2

)(
r∑

k=0

bk

(
κp+k

1 − κ
2N−(p+k)
1

))

= 1 − κ2N
1 −

(
r∑

k=0

akκ
r−k
2

)(
r∑

k=0

bk

(
κk

1 − κ2N−2p−k
1

))
κq−r

2 κp
1 (41)

We will show shortly that there are, in general, solutions to Gs(s) = 0 with Re(s) > 0. We first prove,

Lemma 2 The growth-rate of solutions to the eigenvalue problem with Gs(s) = 0, are bounded by e(γ/h)t

where γ = γ(r) ≥ 0 is a bounded constant that only depends on r.

Proof. Note that |κm(shm)| → 0 as Re(s) → ∞. Thus for any ε > 0 we can find γ > 0 such that |κm| < ε
for Re(sh) > γ. Here γ does not depend on h. For example, from Fig. 4 we see that |κm(shm)| < 1

2 for
Re(shm) > 1. Assuming 2N − 2p− r ≥ 0 and p+ q > r, and using |κm| < ε ≤ 1 it follows that

∣∣∣∣∣

(
r∑

k=0

akκ
r−k
2

)(
r∑

k=0

bk

(
κk

1 − κ2N−2p−k
1

))
κq−r

2 κp
1

∣∣∣∣∣ ≤
( r∑

k=0

|ak|
)

2
( r∑

k=0

|bk|
)
|κ2|q−r |κ1|p

< 2 C2
r ε

p+q−r

where

Cr = max
−

1
2≤ α−r/2 ≤

1
2

r∑

k=0

|ak(α)|.

For example, for linear interpolation, C1 = 1, while for quadratic interpolation C2 = 5/4. We can thus
choose ε small enough so that ε2N < 1

2 and 2 C2
r ε

p+q−r < 1
2 and thus |Gs(s)| > 0. This proves the lemma 2.
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Fig. 5. Second-order wave equation. Left: Overlapping grid eigenfunction for the unstable mode s ≈ (0.01747, 1.251), N = 7
on the semi-infinite interval. The real part of the eigenfunction has been shifted upward for clarity. Right: The eigenvalues s

of the finite domain overlapping grid problem with N = 7 and M = 112. The finite domain problem has a complex eigenvalue
s ≈ (0.01747, 1.251) which agrees with that of the semi-infinite domain value.

Note: For the case of an infinite interval, N → ∞, and linear interpolation it is not hard to show that
there are no solutions with Re(s) > 0 but that there are solutions Re(s) = 0 and |κm| = 1. These latter
solutions are called generalized eigenvalues. For quadratic interpolation on the infinite interval there are also
generalized eigenvalues with Re(s) = 0 but we do not know whether there exist any roots with Re(s) > 0.

Note: (todo?) We should also be able to show that there are no roots for sh � 1 except for the case
s = 0. This implies we only need to add dissipation to high-frequency modes.

6.1.1. Example of an unstable mode for the second-order wave equation
For a given grid with overlap parameters (h1, h2, α, β, p, q,N) there may or may not be a solution to

Gs(s) = 0 with Re(s) > 0. A search of the parameter space can be used to locate solutions. Here is an
example of an unstable solution with a relatively large value for Re(s) that arises on an overlapping grid
with overlap parameters that are typical of grids used in practice. For the overlap parameters

(h1 = 1, h2 ≈ 1.4445, x(2)
q − x

(1)
0 ≈ 2.2524, p = 1, q = 3, α ≈ 1.4408, β ≈ 1.2527, N = 7) (42)

we numerically find the root of Gs(s) = 0 to be sh1 ≈ (0.01747, 1.251). The real and imaginary parts of
the eigenfunction are shown in Fig. 5. Note that the imaginary parts of the eigenfunctions have opposite
curvatures in the overlap region and do not match well there. This bad behaviour seems to be typical of
unstable modes.

We can also compute all the eigenvalues of the matrix of the related finite interval problem where we

truncate the interval on the left and choose the boundary condition ũ
(2)
q−M = 0. Using the same overlap

parameters (42) we find that the finite domain problem has a complex eigenvalue that converges to the
eigenvalue of the semi-infinite domain as M gets large. For example, for M = 112, the eigenvalues of the
finite domain problem are shown in Fig. 5 and there is a complex eigenvalue s ≈ (0.01747, 1.251) which
agrees with the results of the infinite domain value to the number of digits given.

6.1.2. Artificial dissipation and high-order filtering
We can stabilize the scheme (29)-(34) by adding an artificial dissipation of the form

∂2u

∂t2
= c2

∂2u

∂x2
− c

ad

h

(
− h2 ∂

2

∂x2

)d

∂tu,
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Fig. 6. The magnitude of the amplification factor as a function of σ = c∆t/h and the normalized wave-number, ξ/π, for the
SOS scheme for the one-dimensional second-order wave equation on a periodic domain. Left: SOS scheme with a fourth-order
artificial dissipation. Right: SOS scheme with a sixth-order filter. The magnitude of the amplification factor for the filter scheme

is independent of σ.

for some positive integer d = 1, 2, . . ., where we have included the wave speed c > 0 for clarity. The fully
discrete approximation is

un+1
i − 2un

i + un−1
i

∆t2
= c2

un
j+1 − 2un

j + un
j−1

h2
− c

ad

h
(−∆+∆−)d un

i − un−1
i

∆t
, (43)

or

un+1
i = 2un

i − un−1
i + σ2(uj+1 − 2uj + uj−1) − σad(−∆+∆−)d(un

i − un−1
i ), (44)

where σ = c∆t/∆x. Note that the discrete scheme depends on ∆t and h only through σ and thus the
dissipation only depends on σ as the mesh is refined. We say that the coefficient of dissipation increases like
1/h from its form in (43). The factor of 1/h is not needed for weaker instabilities where the growth rate
remains bounded as h goes to zero. The symbol or amplification factor, Ad for the scheme on a periodic
domain is obtained by substituting un

i = An
d eijξ into (44) giving a quadratic equation for Ad = Ad(ξ, σ),

A2
d = (2 − 4 σ2 sin2(ξ/2) − σad(4 sin2(ξ/2))d)Ad − (1 − σad(4 sin2(ξ/2))d) (45)

where |ξ| ≤ π. Fig. 6 shows |Ad| for a case of fourth-order dissipation, d = 2 with ad = 1/8 for various values
of σ. The magnitude of the amplification factor, |Ad|, indicates how much each Fourier mode is damped per
time step. With no dissipation, ad = 0, and σ ≤ 1, |Ad| = 1 for all ξ. For ad > 0 the scheme is stable and
there is damping of the high frequencies provided σ < σ0 where the stability bound σ0 depends on ad and
d. The figure shows that for the given parameters, where σ0 ≈ .617, the value of σ = 1

2 results in the highest
frequency on the mesh (the plus-minus wave) being completely damped. For σ = .6 there is less damping of
the high frequencies and for σ > σ0 the scheme is unstable and the high-frequencies are amplified.

The high-order filter, discussed in section 4.1, provides another way to add dissipation. The fully discrete
scheme is a two step process,

u∗i = 2un
i − un−1

i + σ2(uj+1 − 2uj + uj−1), (46)

un+1
i = u∗i − af (−∆+∆−)du∗i . (47)

The amplification factor for this scheme on a periodic domain is

A2
f = Tf

[
(2 − 4σ2 sin2(ξ/2))Af − 1

]
, (48)

Tf = 1 − af (4 sin2(ξ/2))d, (49)
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where Tf is the transfer function for the filter. If ∆t is chosen so that the unfiltered scheme is stable, |σ| ≤ 1,
then the filtered scheme satisfies

|Af | = |Tf |. (50)

Provided |Tf | ≤ 1, the filtered scheme (46)-(47) will be stable under the same time-step restriction as the
unfiltered scheme. The filtered-scheme would therefore seem superior to the artificial dissipation scheme
since it does not require the time-step to be reduced and its damping characteristics do not depend on σ.
Fig. 6 shows the magnitude of the amplification factor for the sixth-order filter, d = 3, with af = 1/22d.

We now describe how the filter can stabilize the solution. Consider the situation when the scheme without
dissipation has an unstable mode of the form

un
j ≈ es(n∆t)κj = esr(n∆t) eisin∆t |κ|j eijξ, (51)

where s = (sr, si) has a real part sr > 0 and ξ = arg(κ), |ξ| ≤ π. At each time step this solution will grow
by a factor

A = esr∆t = e(srh)σ ≈ 1 + (srh)σ, (52)

where σ = ∆t/h. The filtered scheme will have an amplification per time step of

Af = Tf (ξ) e(srh)σ = (1 − af (4 sin2(ξ/2))d) e(srh)σ. (53)

Recall that srh remains bounded as h → 0. The filtered scheme will be stable provided |Tf (ξ) e(srh)σ| ≤ 1.
For ξ 6= 0, |ξ| ≤ π, we can always stabilize the scheme for small enough σ since the filter does not depend
on σ and |Tf (ξ)| < 1. As an example, consider the unstable solution from section 6.1.1 with srh1 = .0175,
ξ = arg(κ1) ≈ .43π . Using these values in our above analysis we find that with a sixth-order filter, d = 3,
and af = 1/4d, the mode is stabilized for σ = 1 since

Af = Tf (ξ) e(srh)σ ≈ (1 − .06) (1 + .0176) ≈ 0.96 ≤ 1. (54)

Of course this analysis does not rigourously apply to the full overlapping grid problem but it does give an
indication of the expected behaviour.

6.2. Stability of the first-order wave equation

Consider the solution to the scalar first-order wave equation

ut = ux. (55)

We discretize this equation in space using a centered difference approximation on the one-dimensional
overlapping grid of Fig. 3 giving

∂u
(1)
j

∂t
=
u

(1)
j+1 − u

(1)
j−1

2h1
, j = 1, 2, 3, . . . , N − 1 (56)

∂u
(2)
j

∂t
=
u

(2)
j+1 − u

(2)
j−1

2h2
, j = q − 1, q − 2 (57)

u
(1)
j = u0(x

(1)
j ), j = 0, 1, 2, 3, . . . , N, (58)

u
(2)
j = u0(x

(1)
j ), j = q, q − 1, q − 2, . . . , (59)

u
(1)
N = g(t), (60)

u
(1)
0 =

r∑

k=0

aku
(2)
k , u(2)

q =

r∑

k=0

bku
(1)
p+k. (61)

Proceeding as in the previous section, we are led to study the eigenvalue problem for the semi-discrete,
Laplace transformed solution,
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Fig. 7. Contours and surface plot of |κ| from the first-order wave equation for the root κ(sh) with |κ| ≤ 1 for Re(s) > 0. The

modulus of κ is one along the imaginary axis for Im(sh) ∈ [−1, 1] and decays to zero as Re(sh) → ∞.

2(sh1)ũ
(1)
j = ũ

(1)
j+1 − ũ

(1)
j−1, j = 1, 2, 3, . . . , N − 1, (62)

2(sh2)ũ
(2)
j = ũ

(2)
j+1 − ũ

(2)
j−1, j = q − 1, q − 2, . . . , (63)

ũ
(1)
N = 0, |ũ(2)

j | <∞, (64)

ũ
(1)
0 =

r∑

k=0

akũ
(2)
k , ũ(2)

q =

r∑

k=0

bkũ
(1)
p+k. (65)

The solution to this eigenvalue problem is

ũ
(1)
j = A(κj

1 − (−1)N (−κ1)
2N−j), j = 0, 1, 2, . . . , N (66)

ũ
(2)
j = B(−κ2)

q−j , j = q, q − 1, q − 2, . . . , (67)

where κm(shm), m = 1, 2, are roots of the characteristic equation κ2 − 2(shm)κ− 1 = 0 with |κm(shm)| ≤ 1
for Re(s) > 0 and are given by

κm = shm −
√

(shm)2 + 1, (68)

− π/2 ≤ arg(
√

(shm)2 + 1) < π/2.

Fig. 7 shows |κ| as a function of sh.
The solution (66)-(67) is of a similar form as that for the second-order wave equation and we are thus led

to the following determinant condition for non-trivial solutions

Gf (s) = 1 − (−1)N κ2N
1 −

(
r∑

k=0

ak(−κ2)
q−k

)(
r∑

k=0

bk

(
κp+k

1 − (−1)N (−κ1)
2N−p−k

))
. (69)

The necessary Godunov-Ryabenkii condition for stability of solutions to equations (56)-(61) is that there
be no roots of Gf (s) with Re(s) > 0. The analogues of lemmas 1 and 2 hold true for the first-order wave
equation,

Lemma 3 If there is a solution to the eigenvalue problem (62)-(65) for given values (s, h1, h2, α, β,N), then
for any γ > 0 there will be another solution (on a different grid) with values (sγ, h1/γ, h2/γ, α, β,N).

Proof. The proof follows that of lemma 1 2.

Lemma 4 The growth-rate of solutions to the eigenvalue problem (62)-(65) with Gf (s) = 0, are bounded
by e(γ/h)t where γ = γ(r) ≥ 0 is a bounded constant that only depends on r.
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Fig. 8. First-order wave equation. Left: Overlapping grid eigenfunction for the unstable mode s ≈ (0.02022, 0.6701), N = 7 on
the semi-infinite interval with quadratic interpolation. Right: Unstable mode for linear interpolation, s ≈ (0.01108, 0.4786).

Proof. The proof follows that of lemma 2 since κm → 0 as Re(s) → ∞ 2.

Olsson and Petersson [19] considered the infinite interval case and linear interpolation. The infinite interval
case is obtained by setting the two terms κ2N

1 = 0 and (−κ1)
2N−2p−k = 0 in the expression for Gf (s).

They showed that there are no eigenvalues with Re(s) > 0 but that there are generalized eigenvalues with
Re(s) = 0 in the special case that α = 0 and β = 0. These generalized eigenvalues will occur for any order
of interpolation since the interpolation is always exact for α = β = 0. For the finite interval case they found
roots with Re(s) > 0. As the mesh was refined (increasing N) the real part of some of these roots increased
proportional to 1/hγ where γ ≈ .065 and γ ≈ .033 for the two cases presented. They also found roots whose
real part decreased as the mesh was refined.

For the semi-infinite interval problem with linear or quadratic interpolation we can find roots with Re(s) >
0. We know analytically that these roots grow like 1/h as the mesh is refined when N is kept fixed. The
evidence thus suggests that the case of keeping a fixed number of points, N , in the grid next to the boundary
is the more difficult case compared to the situation when N is increased as the mesh is refined.

6.2.1. Examples of unstable modes for the first-order wave equation
We present two examples of unstable modes for the first-order wave equation that are determined as roots,

Gf (s) = 0, of equation 69. For quadratic interpolation we use the overlap parameters

(h1 = 1, h2 ≈ 1.3900, x(2)
q − x

(1)
0 = 3.8225, p = 3, q = 4, α ≈ 1.2500, β ≈ 0.82250, N = 7)

and we numerically find the root of Gf (s) = 0 to be sh1 ≈ (0.02022, 0.6701). For linear interpolation we use
the grid parameters

(h1 = 1, h2 ≈ 1.5025, x(2)
q − x

(1)
0 = 3.0000, p = 2, q = 3, α ≈ 0.0033278, β = 0.0, N = 5)

and we numerically find the root of Gf (s) = 0 to be sh1 ≈ (0.01108, 0.4786). As for the second-order wave
equation, these results were confirmed by computing all the eigenvalues of the matrix that results from the
finite domain problem. The real and imaginary parts of the eigenfunctions for these two cases are shown in
Fig. 8. We again note the poor agreement of the eigenfunctions in the overlap region.

6.2.2. Dissipation in the Godunov method
The Godonov method described in section 4.2 can be applied to the solution of the first order scalar wave

equation, ut + cux = 0 with c > 0. The second-order unlimited scheme (using L(b, c) = (b+ c)/2) is given by
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Fig. 9. The magnitude of the amplification factor for the Godunov scheme, |Ag |, and the Lax-Wendroff scheme, |Alw|, for the

one-dimensional first-order wave equation on a periodic domain. Note that |Ag(σ)| = |Ag(1− σ)| so that the curve for σ = 0.3
for the Godunov scheme is the same as the curve for σ = 0.8.

un+1
i = un

i − σ∆0u
n
i +

σ2

2
∆+∆−u

n
i +

σ

4
(1 − σ)∆0∆+∆−u

n
i − σ

8
(1 − σ)(∆+∆−)2un

i , (70)

where σ = c∆t/dx is the CFL parameter. The first three terms on the right-hand side of (70) comprise
the Lax-Wendroff scheme. The amplification factor, Ag for the second-order un-limited Godunov scheme is
obtained by substituting un

i = An
g eijξ into (70) resulting in

Ag(ξ, σ) = 1 − 2σ2 sin2(ξ/2) − 2σ(1 − σ) sin4(ξ/2) − i σ sin(ξ)(1 + (1 − σ) sin2(ξ/2)) (71)

where |ξ| ≤ π. Whence,

|Ag(ξ, σ)|2 = 1 − 2σ(1 − σ)(1 + σ2 + (1 − σ)2) sin4(ξ/2) − 4σ2(1 − σ)2 sin6(ξ/2). (72)

Note that |Ag(σ)| = |Ag(1 − σ)|. For the Lax-Wendroff scheme, by comparison, we have

|Alw(ξ, σ)|2 = 1 − 4σ2(1 − σ2) sin4(ξ/2). (73)

Fig. 9 shows the magnitude of the amplification factor for a few selected of values of σ. The magnitude of
the amplification factor is of the same nature as the transfer function used to define the high-order filter (16)
and shown in Fig. 2. The value σ = 1

2 results in the most dissipation of high wave numbers for the Godunov
scheme while the dissipation goes to zero when σ = 1 and σ = 0.

7. Adaptive Mesh Refinement

In this section we discuss the application of the adaptive mesh refinement (AMR) approach for solving
the equations of elasticity on overlapping grids. AMR is a technique that adds fine grid patches to regions of
the computational domain where more resolution is needed. AMR can dramatically speed up a computation
and/or enable simulations with a much higher effective resolution compared to uniformly refining the grid.
Block structured adaptive mesh refinement for hyperbolic problems was considered as early as 1973 by
Browning, Kreiss and Oliger [13]. The AMR approach was further developed by Berger and Oliger [20] and
later extended for shock hydrodynamics by Berger and Colella [21]. In previous work we have developed
AMR algorithms for overlapping grids and have applied them to the solution of two-dimensional high-speed
reactive flow problems with moving rigid bodies [22] and for parallel three-dimensional computations of
reactive flows [2].

The adaptive mesh refinement (AMR) approach is designed to locally increase the grid resolution where
an estimate of the error is large. This is done by adding refined grid patches to the existing base-level
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component grids. The refinement grids are aligned with the underlying base grid (i.e. the refinement is done
in parameter space) and are arranged in a hierarchy with the base grids belonging to level ` = 0, the next
finer grids being added to level ` = 1 and so on. Grids on level ` are refined by a refinement ratio nr from
the grids on level `−1. The grids are properly nested so that a grid on level ` is completely contained in the
set of grids on the coarser level `− 1. This requirement is relaxed at physical boundaries to allow refinement
grids to align with the boundary.

For simplicity, the numerical solution on all grids is advanced in time using the same time step. After
every nregrid time steps, the whole refined-grid hierarchy is rebuilt to accommodate the evolution of sharp
features of the solution. This is done by first re-computing an estimate of the error given by

ei =

nc∑

k=1

ek,i, (74)

where the error is estimated as a sum of error estimates for each component,

ek,i =
1

3

3∑

α=1

(
c1
sk

|∆0αuk,i| +
c2
sk

|∆+α∆−αuk,i|
)
. (75)

In (75), ∆0α, ∆+α and ∆−α are the centered, forward and backward undivided difference operators in the
α index direction, respectively, uk,i is the kth component of the numerical solution for u at grid index
i, sk is a scale factor for component k, and c1 and c2 are weights. The error estimate used here follows
that introduced in [22] for compressible flows where it was found to be an effective choice, although other
methods are possible. Once the error estimate is computed, it is smoothed and then grid points are tagged
for refinement where ei is greater than a chosen tolerance. Buffer points are added to increase the region
of tagged points slightly (so that fewer regrids are needed), and a new overlapping grid hierarchy is build
to cover the buffered region of tagged points. (Typically, the width of the buffer is taken to be 2 so that
nregrid = 2nr, see [22].) The numerical solution is then transferred from the old grid hierarchy to the new
one, and the time-stepping proceeds for the solution on the new grid hierarchy until the next gridding step.
Note that the SOS-C scheme uses three time levels and thus at each regrid step we transfer (interpolate)
the solutions at the two times t and t− ∆t from the old grid hierachy to the new.

The accuracy of the AMR approach is verified in Section 8.4 for a traveling pulse. In Section 8.7 AMR is
used to compute the diffraction of p-wave by a cylindrical cavity.

8. Numerical results

In this section we present numerical results to verify the correctness of the implementations and the accu-
racy and stability of the approximations. We compare results from the SOS-C and FOS-G approximations.
We begin by computing solutions and errors with the method of analytic solutions, a powerful technique
for generating synthetic exact solutions for testing numerical approximations. We then determine the errors
when computing known solutions to a two-dimensional problem in an annular domain and a three dimen-
sional problem in a spherical domain. In section 8.8 we provide some CPU timing results. We conclude this
section by presenting results from an interesting problem with complex geometry.

8.1. The method of analytic solutions

The method of analytic solutions is a very useful technique for constructing exact solutions to check the
accuracy of a numerical implementation. This method, also sometimes known as the method of manufactured
solutions [23], or twilight-zone forcing [1] adds forcing functions to the governing equations and boundary
conditions. These forcing functions are determined so that some given functions, ū(x, t), will be the ex-
act solution to the forced equations. With this approach, the error in the discrete solution can be easily
determined. To illustate the technique, consider solving the IBVP for the equations of linear elasticity in
second-order form,
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ρutt = (λ+ µ)∇(∇ · u) + µ∆u + f , for x ∈ Ω,

u(x, 0) = u0(x), ut(x, 0) = u1(x), for x ∈ Ω, at t = 0,

u(x, t) = g(x, t), for x ∈ ∂Ω.

Any given smooth function, ū(x, t), will be an exact solution of the IBVP if we set the forcing function,
initial conditions and boundary conditions as

f(x, t) = ρūtt − (λ+ µ)∇(∇ · ū) − µ∆ū,

u0(x) = ū(x, 0), u1(x) = ūt(x, 0), and g(x, t) = ū(x, t).

In our numerical implementation, we have a number of choices available for ū, including polynomials,
trigonometric functions, and exponential functions, among others.

Low order polynomial solutions can be used to check that the approximations are exact on Cartesian grids.
For most of the results in the following sections we use a trigonometric exact solution. In two dimensions
the trigonometric solution is

ū1 = (1/2) cos(πfxx) cos(πfyy) cos(πftt),

ū2 = (1/2) sin(πfxx) cos(πfyy) cos(πftt),

v̄1 = (3/4) sin(πfxx) cos(πfyy) cos(πftt),

v̄2 = (1/4) sin(πfxx) sin(πfyy) cos(πftt), (76)

σ̄11 = −(1/2) cos(πfxx) cos(πfyy) cos(πftt),

σ̄12 = (2/5) sin(πfxx) cos(πfyy) cos(πftt),

σ̄21 = (2/5) sin(πfxx) cos(πfyy) cos(πftt),

σ̄22 = (3/5) cos(πfxx) sin(πfyy) cos(πftt),

while in three dimensions we use

ū1 = cos(πfxx) cos(πfyy) cos(πfzz) cos(πftt),

ū2 = (1/2) cos(πfxx) sin(πfyy) cos(πfzz) cos(πftt),

ū3 = (3/4) cos(πfxx) cos(πfyy) sin(πfzz) cos(πftt),

v̄1 = (3/4) sin(πfxx) cos(πfyy) cos(πfzz) cos(πftt),

v̄2 = (1/4) cos(πfxx) cos(πfyy) sin(πfzz) cos(πftt),

v̄3 = −(1/2) sin(πfxx) sin(πfyy) sin(πfzz) cos(πftt),

σ̄11 = −(1/2) cos(πfxx) cos(πfyy) cos(π cos(πftt)fzz),

σ̄12 = (2/5) sin(πfxx) cos(πfyy) cos(πfzz) cos(πftt), (77)

σ̄13 = (3/5) cos(πfxx) cos(πfyy) sin(πfzz) cos(πftt),

σ̄21 = (2/5) sin(πfxx) cos(πfyy) cos(πfzz) cos(πftt),

σ̄22 = −(7/10) sin(πfxx) cos(πfyy) sin(πfzz) cos(πftt),

σ̄23 = (.65) cos(πfxx) sin(πfyy) sin(πfzz) cos(πftt),

σ̄31 = (3/5) cos(πfxx) cos(πfyy) sin(πfzz) cos(πftt),

σ̄32 = (.65) cos(πfxx) sin(πfyy) sin(πfzz) cos(πftt),

σ̄33 = −(1/5) sin(πfxx) sin(πfyy) sin(πfzz) cos(πftt).

The second-order-system only requires ūm. The first-order-system also uses v̄m and σ̄mn. Note that ūm, v̄m

and σ̄mn are chosen as independent functions and thus, for example, v̄m is not the time derivative of ūm.

8.2. Circular void in a square

We solve the equations of elasticity in the two-dimensional domain ΩCV that consists on a square region
with a circular hole as shown in Fig. 10. We use the method of analytic solutions as described in Section 8.1
with the trigonmetric polynomial solution (76) with fx = fy = ft = 1. We solve the elasticity equations on a
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sequence of grids with increasing resolution and determine the maximum errors and estimated convergence
rate. To be specific, the domain is defined as ΩCV = [−1, 1]2 − ΩD, where ΩD is the circular disk of radius
R = .5. The grid for an annular region is defined by

A([ra, rb], N1, N2) =
{(
ri2 cos(θi1), ri2 sin(θi1)

) ∣∣ θi1 = 2πi1/N1, ri2 = ra + (rb − ra)i2/N2,

ik = 0, 1, . . . , Nk, k = 1, 2
}
.

The grid for a rectangle is

R([xa, xb] × [ya, yb], N1, N2) =
{(
xa + (xb − xa)i1/N1, ya + (yb − ya)i2/N2

) ∣∣ ik = 0, 1, . . . , Nk, k = 1, 2
}
.

The number of grid points in each coordinate direction for a grid with resolution factor j is chosen so that
the grid spacing is approximately

∆s(j) =
1

10j
.

The composite grid for ΩCV is composed of a background square and an annular grid,

G(j)
CV = R([−1, 1]2, Nx(j), Nx(j)) ∪ A([R,R+ .25], Nθ(j), Nr(j)),

where Nx(j) = b2/∆s(j) + 1.5c, Nθ(j) = b2π(R + .125)/∆s(j) + 1.5c and Nr(j) = b.25/∆s(j) + 2.5c. Here
bxc denotes the largest integer less than or equal to x.

Figures 11 and 12 contain the maximum errors and convergence rates for the displacement and traction
boundary conditions, respectively. Columns titled “r” in the figures contain the ratio of the error from the
current resolution to the previous. These ratios should be approximately equal to four for a second-order
accurate scheme. The errors are shown graphically in Fig. 13. These results are for λ = 1 and µ = 1. The

convergence rates are all reasonably close to two. Fig. 10 shows the grid G(2)
CV , along with a component of

the solution and error for this problem.

0.5

-0.5

u1

5.3e-3

-5.4e-3

err

Fig. 10. Circular void in a square with a trigonometric analytic solution: grid G
(2)
CV

, solution u1, and error in u1 at t = 1

(SOS-C).

8.3. Spherical void in a box

In this example we consider a geometry consisting of a spherical void in a box as shown in Figure 14. We
solve the three-dimensional elasticity equations using the method of analytic solutions with the trigonometric
solution (77) and fx = fy = fz = ft = 0.5. The composite grid for this geometry is shown in Figure 14 and
consists of a Cartesian background grid and two orthographic patches that cover the sphere. The box grid
is defined as

B ([xa, xb] × [ya, yb] × [za, zb], N1, N2, N3) =
{
(xa + i1∆x, ya + i2∆y, za + i3∆z)

∣∣

∆x = (xb − xa)/N1, ∆y = (yb − ya)/N2, ∆z = (zb − za)/N3, iα = 0, 1, . . . , Nα, α = 1, 2, 3
}
.

(78)
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SOS-C FOS-G

Grid G
(j)
CV

∆s(j) e
(j)
u r e

(j)
u r e

(j)
v r e

(j)
σ r

G
(1)
CV

1/10 1.2 × 10−2 2.8 × 10−3 5.8 × 10−3 2.1 × 10−2

G
(2)
CV

1/20 3.1 × 10−3 4.0 5.6 × 10−4 5.0 1.6 × 10−3 3.6 5.8 × 10−3 3.7

G
(4)
CV

1/40 7.8 × 10−4 4.0 1.3 × 10−4 4.2 4.2 × 10−4 3.9 1.5 × 10−3 3.9

G
(8)
CV

1/80 1.9 × 10−4 4.0 3.5 × 10−5 3.8 1.1 × 10−4 3.8 3.8 × 10−4 3.9

rate 2.00 2.10 1.91 1.94

Fig. 11. Circular void in a square with a trigonometric analytic solution: maximum errors and convergence rates at t = 0.5 for

displacement boundary conditions. The columns labeled “r” contain the ratio of the error at the current resolution to that at

the previous resolution.

SOS-C FOS-G

Grid G
(j)
CV

∆s(j) e
(j)
u r e

(j)
u r e

(j)
v r e

(j)
σ r

G
(1)
CV

1/10 2.1 × 10−2 5.2 × 10−3 1.3 × 10−2 3.7 × 10−2

G
(2)
CV

1/20 5.7 × 10−3 3.6 1.0 × 10−3 5.2 2.3 × 10−3 5.9 6.9 × 10−3 5.4

G
(4)
CV

1/40 1.6 × 10−3 3.6 2.1 × 10−4 4.8 4.6 × 10−4 4.9 1.4 × 10−3 4.9

G
(8)
CV

1/80 4.2 × 10−4 3.8 5.0 × 10−5 4.2 1.2 × 10−4 4.0 3.4 × 10−4 4.2

rate 1.88 2.24 2.28 2.26

Fig. 12. Circular void in a square with a trigonometric analytic solution: maximum errors and convergence rates at t = 0.5 for
traction boundary conditions.
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Fig. 13. Circular void in a square with a trigonometric analytic solution: maximum errors at t = 0.5 as a function of grid

spacing. Left: displacement boundary conditions. Right: traction boundary conditions.

The grids on the sphere are defined in terms of the orthographic transform Op, given by

x = Op (r; [ρa, ρb], ŝ2, ŝ3) ≡
(
p
(1 − σ2)ρ

1 + σ2
,

2ρs2
1 + σ2

, p
2ρs3

1 + σ2

)
,

where ρ, s2, s3 and σ are given in terms of r = (r1, r2, r3) ∈ [0, 1]3 by

ρ = ρa + r1(ρb − ρa), s2 =

(
r2 −

1

2

)
ŝ2, s3 =

(
r3 −

1

2

)
ŝ3, σ2 = s22 + s23,

and p = +1 for the transformation near the north pole and p = −1 for the transformation near the south
pole. The parameters [ρa, ρb] specify the radial extent of the region, while ŝ2 and ŝ3 determine its lateral
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.15

-.36

σ11

Fig. 14. Spherical void in a box with a trigonometric analytic solution: grid G
(2)
s and solution σ11 at t = 0.1 (FOS-G).

extent. The orthographic grid, Op centered about pole p, is now defined as

Op ([ρa, ρb], ŝ2, ŝ3, N1, N2, N3) =
{
xi

∣∣ xi = Op (ri; [ρa, ρb], ŝ2, ŝ3) , iα = 0, 1, . . . , Nα, α = 1, 2, 3
}
. (79)

The number of grid points in each coordinate direction for a grid with resolution factor j is chosen so that
the grid spacing is approximately ∆s(j) = 1/(5j). The sphere-in-a-box composite grid is then defined as

G(j)
s = B

(
[−1.2, 1.2]3, Nx(j), Nx(j), Nx(j)

)
∪ O±1 ([.5, .9], 2.1, 2.1, Nr(j), No(j), No(j)) ,

where Nx(j) = b2.4/∆s(j) + 1.5c, Nr(j) = b0.4/∆s(j) + 1.5c and No(j) = b2.24/∆s(j) + 1.5c.
Results for this composite grid using the trigonometric exact solution (77) and displacement boundary

conditions are given in Fig 15 while results for traction boundary conditions are given in Fig 16. The finest

grid used, G(8)
s had about 1 million grid points. The convergence rates for the SOS-C and FOS-G schemes

are reasonably close to 2. Some of the variables for FOS-G seem to be converging at a rate larger than 2
but this likely caused by the grids being still relatively coarse.

SOS-C FOS-G

Grid G
(j)
s ∆s(j) e

(j)
u r e

(j)
u r e

(j)
v r e

(j)
σ r

G
(2)
s 1/10 7.1 × 10−3 1.5 × 10−3 2.9 × 10−3 1.5 × 10−2

G
(4)
s 1/20 6.6 × 10−4 10.7 2.5 × 10−4 6.0 4.3 × 10−4 6.7 3.7 × 10−3 4.1

G
(8)
s 1/40 1.4 × 10−4 4.7 3.6 × 10−5 7.0 1.0 × 10−4 4.2 9.1 × 10−4 4.0

rate 2.82 2.70 2.41 2.02

Fig. 15. Spherical void in a box with a trigonometric analytic solution: maximum errors and convergence rates at t = 0.1 for

displacement boundary conditions. The columns labeled “r” contain the ratio of the error at the current resolution to that at
the previous resolution.

8.4. Traveling pulse with AMR

In this section we verify the accuracy of the adaptive mesh refinement option described in Section 7. We
compute the solution to a pulse that travels through an overlapping grid with an embedded rotated grid.
The traveling pulse solution is defined with the method of analytic solutions described in section 8.1 and is
given by

ū(x, t) = c0 exp
{
− (|x − xc(t)|/c1)2

}
, (80)

where c0 and c1 are parameters, and xc(t) = x0 +v0t gives the position of the center of the pulse at a time t.
Here, x0 is the position of the center of the pulse at t = 0 and v0 is its constant velocity. The computations
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SOS-C FOS-G

Grid G
(j)
s ∆s(j) e

(j)
u r e

(j)
u r e

(j)
v r e

(j)
σ r

G
(2)
s 1/10 8.3 × 10−3 1.5 × 10−3 7.8 × 10−3 2.1 × 10−2

G
(4)
s 1/20 2.0 × 10−3 4.2 2.5 × 10−4 6.0 1.0 × 10−3 7.6 5.2 × 10−3 4.1

G
(8)
s 1/40 4.9 × 10−4 4.0 3.6 × 10−5 7.0 2.3 × 10−4 4.4 1.3 × 10−3 4.1

rate 2.04 2.70 2.53 2.03

Fig. 16. Spherical void in a box with a trigonometric analytic solution: maximum errors and convergence rates at t = 0.1 for

traction boundary conditions. The columns labeled “r” contain the ratio of the error at the current resolution to that at the

previous resolution.

Fig. 17. Propagation of a pulse through an embedded rotated grid, computed using AMR. The locations of the refinement grids

are recomputed every 4 time-steps. Contours of the displacement u1 at times t = 0 (left), t = 0.3 (middle), and t = 0.8 (right),

are plotted so that the grids are also shown. Top: results from SOS-C. Bottom: results from FOS-G.

used x0 = (−0.5,−0.5), v0 = (1, 1), c1 = 1/30 and c0 = 1. There was one refinement level of refinement
ratio nr = 2.

The rotated-square-in-a-square grid, G(j)
r , for this case was defined as the union of a back-ground Cartesian

grid for the square [−1, 1]2 together with a Cartesian grid for the domain [−0.4, 0.4]2 that is rotated by 45o

about its center. The grid spacing for resolution factor j was ∆s(j) ≈ 1/10j . Figure 17 shows results of this
computation for the SOS-C and FOS-G methods. The solution is seen to pass through the grid interfaces
with little apparent distortion. The maximum errors and convergence rates for this problem are given in
Fig. 18. The results indicate that the solution converges at second-order accuracy.
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SOS-C FOS-G

Grid G
(j)
r ∆s(j) e

(j)
u r e

(j)
u r e

(j)
v r e

(j)
σ r

G
(1)
r 1/10 3.7 × 10−2 5.6 × 10−3 2.2 × 10−2 4.3 × 10−2

G
(2)
r 1/20 6.1 × 10−3 6.1 1.4 × 10−3 3.8 5.3 × 10−3 4.2 1.1 × 10−2 3.9

G
(4)
r 1/40 1.5 × 10−3 4.0 3.7 × 10−4 3.9 1.4 × 10−3 3.7 2.5 × 10−3 4.3

G
(8)
r 1/80 3.9 × 10−4 4.0 6.8 × 10−5 5.4 3.6 × 10−4 4.0 6.3 × 10−4 4.0

rate 2.18 2.11 1.97 2.03

Fig. 18. Traveling pulse with AMR on a rotated-square-in-a-square grid. The maximum errors and estimated convergence rates

at t = 1.0 are given for the SOC-C and SOS-G methods.

-1.

-2.7

σ11
1.3

-1.3

σ12
-1.

-3.8

σ22

Fig. 19. Vibrational mode n = 1 of an elastic annulus with traction boundary conditions (case 2). Contours of different
components of the stress at different times plotted on the deformed grid, scaling the displacement by a factor of 0.25. Left: σ11

at t = 0. Middle: σ12 at t = 0.6. Right: σ22 at t = 2.0.

8.5. Vibrational modes of an elastic annulus

Consider the two-dimensional annular domain with inner radius ra and outer radius rb, ΩA = {x ∈
R

2
∣∣ ra ≤ |x| ≤ rb}. Solutions that only depend on the radius r and time t will satisfy the equation

ρ
∂2

∂t2
ur = (λ+ 2µ)

∂

∂r

(
1

r

∂

∂r
(rur)

)
. (81)

where ur = cos(θ)u1 +sin(θ)u2 is the radial component of the displacement. We consider solutions satisfying
displacement boundary conditions,

ur(r, t) = 0, at r = ra, rb, (82)

or traction boundary conditions

σrr(r, t) = λ
1

r

∂

∂r
(rur) + 2µ

∂

∂r
ur = 0, at r = ra, rb. (83)

The time independent solution to (81) is of the form

ur = Ar +
B

r
.

For traction boundary conditions with a constant pressure pa on the inner surface at r = ra and a constant
pressure pb on the outer surface at r = rb the solution is (see Love [24], page 144),

A =
pbr

2
b − par

2
a

2(λ+ µ)(r2a − r2b )
, B =

(pb − pa)r2ar
2
b

2µ(r2a − r2b )
. (84)

The time harmonic solutions to (81), ur(r, t) = U(r) e−iωt, satisfy

U(r) = AnJ1(αnr) +BnY1(αnr),
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where J1 and Y1 are the Bessel functions of the first and second kind, and α2
n = ω2

nρ/(λ+2µ), n = 1, 2, 3, . . ..
For displacement boundary conditions, αn are roots of the eigenvalue equation

ΛD(α) = J1(αra)Y1(αrb) − J1(αrb)Y1(αra) = 0.

while for traction boundary conditions αn are roots of

ΛT (α) = GJ (αra)GY (αrb) −GJ(αrb)GY (αra) = 0,

GJ (αr) = (λ+ 2µ)αrJ ′
1(αr) + λJ1(αr),

GY (αr) = (λ+ 2µ)αrY ′
1(αr) + λJ1(αr).

To evaluate the accuracy of the numerical schemes we are thus led to consider the exact solution

ūr = Ar +
B

r
+ (AnJ1(αnr) +BnY1(αnr)) cos(ωnt). (85)

We consider four cases with boundary conditions and parameters given in Fig. 20. For all cases we look at
mode n = 1 and rb/ra = 2. The first two cases consider displacement and traction boundary conditions for
λ/µ = 1 while the latter two cases use λ/µ = 100.

Case BC λ/µ (pa, pb) α1 A1 B1

1 D 1 (0, 0) 6.3931567616 1.8502739846 −1.3135880300

2 T 1 (1, 2) 1.3113530190 0.1861924685 −0.1140163754

3 D 100 (1, 2) 6.3931567616 1.8502739846 −1.3135880300

4 T 100 (1, 2) 6.2525010635 1.7624191636 1.6031685352

Fig. 20. Parameters used in computing the vibrational modes of the annulus. The boundary condition, BC, is either displacmcent
(D) or traction (T).

The composite grid for the annulus ΩA is composed of a single annular grid of inner radius 1
2 and outer

radius 1,

G(j)
A = A([ 12 , 1], Nθ, Nr),

where Nr = b.5/∆s(j) + 2.5c, Nθ = b2π(.75)/∆s(j) + 1.5c, and the grid spacing is ∆s(j) = 1/(10j).
Fig. 23 and Figures 21-22 show the maximum errors on a sequence of grids and estimate convergence

rates for the displacement and traction boundary conditions for λ = µ = 1. The convergence rates are close
to the expected value of 2. Figure 19 shows the solution at a few different times.

Results for λ = 100, µ = 1 are given in figure 26. and Figures 24-25. This case is more difficult as many
more time steps are required to reach the final time and the traction boundary conditions can be sensitive
for large λ/µ. The FOS-G results for traction boundary conditions show convergence rates that are slightly
larger than expected.

SOS-C FOS-G

Grid G(j) ∆s(j) e
(j)
u r e

(j)
u r e

(j)
v r e

(j)
σ r

G(1) 1/10 2.4 × 10−2 5.9 × 10−3 5.2 × 10−1 3.0 × 10−1

G(2) 1/20 7.2 × 10−3 3.3 2.2 × 10−3 2.6 1.1 × 10−1 4.9 4.5 × 10−2 6.7

G(4) 1/40 1.9 × 10−3 3.7 6.7 × 10−4 3.3 2.2 × 10−2 4.8 1.6 × 10−2 2.7

G(8) 1/80 4.9 × 10−4 3.9 1.8 × 10−4 3.7 4.3 × 10−3 5.2 4.7 × 10−3 3.5

G(16) 1/160 1.3 × 10−4 3.9 4.2 × 10−5 4.2 9.0 × 10−4 4.7 1.1 × 10−3 4.1

rate 1.90 1.79 2.30 1.93

Fig. 21. Vibrational modes of an annulus, case 1. Maximum errors and estimates convergence rates for displacement boundary

conditions at t = 0.5 with λ/µ = 1.
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SOS-C FOS-G

Grid G(j) ∆s(j) e
(j)
u r e

(j)
u r e

(j)
v r e

(j)
σ r

G(1) 1/10 7.4 × 10−4 6.5 × 10−3 1.6 × 10−2 4.3 × 10−2

G(2) 1/20 1.8 × 10−4 4.0 1.7 × 10−3 3.9 4.2 × 10−3 3.9 1.1 × 10−2 3.9

G(4) 1/40 6.1 × 10−5 3.0 3.8 × 10−4 4.5 9.8 × 10−4 4.3 2.6 × 10−3 4.4

G(8) 1/80 1.8 × 10−5 3.4 8.3 × 10−5 4.5 2.4 × 10−4 4.1 5.8 × 10−4 4.4

G(16) 1/160 4.8 × 10−6 3.8 1.9 × 10−5 4.4 5.8 × 10−5 4.1 1.3 × 10−4 4.3

rate 1.79 2.13 2.04 2.10

Fig. 22. Vibrational modes of an annulus, case 2. Maximum errors and estimates convergence rates for traction boundary

conditions at t = 0.5 with λ/µ = 1.
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Fig. 23. Maximum errors in computing a time harmonic solution for an annulus at t = 0.5 with λ/µ = 1. Left: case 1,

displacement boundary conditions. Right: case 2, traction boundary conditions.

SOS-C FOS-G

Grid G(j) ∆s(j) e
(j)
u r e

(j)
u r e

(j)
v r e

(j)
σ r

G(1) 1/10 1.2 × 10−1 2.5 × 10−1 2.8 × 100 20.4 × 101

G(2) 1/20 4.1 × 10−2 2.9 6.4 × 10−2 3.9 1.3 × 100 2.2 51.5 × 100 4.0

G(4) 1/40 1.2 × 10−2 3.4 1.4 × 10−2 4.6 4.0 × 10−1 3.3 10.9 × 100 4.7

G(8) 1/80 3.2 × 10−3 3.7 2.9 × 10−3 4.7 1.0 × 10−1 3.8 2.3 × 100 4.8

G(16) 1/160 8.2 × 10−4 3.9 6.5 × 10−4 4.5 2.6 × 10−2 4.0 5.0 × 10−1 4.6

rate 1.80 2.16 1.72 2.19

Fig. 24. Vibrational modes of an annulus, case 3. Maximum errors and estimates convergence rates for displacement boundary

conditions at t = 0.5 with λ/µ = 100.

8.6. Vibrational modes of an elastic sphere

The vibration modes of an elastic sphere have been discussed, for example, by Lamb [25] and Love [24].
For verification we consider the following exact solution (a so-called solution of the second class) for a sphere
of radius a,
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SOS-C FOS-G

Grid G(j) ∆s(j) e
(j)
u r e

(j)
u r e

(j)
v r e

(j)
σ r

G(1) 1/10 1.3 × 10−1 1.7 × 10−1 14.5 × 100 81.9 × 100

G(2) 1/20 4.6 × 10−2 2.8 3.7 × 10−2 4.5 2.9 × 100 5.0 18.7 × 100 4.4

G(4) 1/40 1.3 × 10−2 3.5 6.5 × 10−3 5.8 5.2 × 10−1 5.5 3.3 × 100 5.6

G(8) 1/80 3.5 × 10−3 3.8 9.9 × 10−4 6.5 9.7 × 10−2 5.4 5.2 × 10−1 6.4

G(16) 1/160 9.1 × 10−4 3.9 1.5 × 10−4 6.7 2.0 × 10−2 4.9 7.9 × 10−2 6.6

rate 1.81 2.55 2.40 2.52

Fig. 25. Vibrational modes of an annulus, case 4. Maximum errors and estimates convergence rates for traction boundary

conditions at t = 0.5 with λ/µ = 100.
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Fig. 26. λ/µ = 100, maximum errors in computing a time harmonic solution for an annulus at t = 0.5 with λ/µ = 100. Left:
case 3, displacement boundary conditions. Right: case 4, traction boundary conditions. The errors for v and σ are scaled to fit

nicely on the graph.

u
(n)
j = A cos(ωt)

{
− 1

α2

(
ψn(αr)

∂ζn
∂xj

+ h2xjψn+1(αr)ζn

)

+ ψn−1(κr)
∂χn

∂xj
− n

n+ 1
κ2ψn+1(κr)

(
r2
∂χn

∂xj
− (2n+ 1)xjχn

)}
(86)

where

κ2 = ω2ρ/µ, (87)

α2 = ω2ρ/(λ+ 2µ), (88)

ψn(x) =

(
1

x

d

dx

)n(
sin(x)

x

)
,

χn(r, θ, φ) = Cn,mζn(r, θ, φ) = Dn,mr
n eilθP l

n(cosφ), (solid spherical harmonic of order n).

Here (r, θ, φ) are the spherical polar coordinates with radius r, 0 ≤ r ≤ a, azimuthal angle θ, 0 ≤ θ ≤ 2π, and
polar angle φ, 0 ≤ φ ≤ π. For each n = 0, 1, 2, . . . there are an infinite number of eigenmodes, m = 1, 2, . . .,
for particular values of ω = ωn,m, κ = κn,m, and α = αn,m. The eigenvalues are the roots of a certain
frequency equation determined in the usual way by imposing the stress free boundary conditions on the
surface of the sphere [24]. We consider, in particular, the mode n = 2 of the spheroidal vibrations in which
case the solid spherical harmonic functions take the simple form
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ζ2 = 2z2 − x2 − y2,

χ2 = C2,mζ2.

This solution corresponds to a mode where the sphere periodically becomes elongated and compressed
along the z−axis as shown in Fig. 28. When the material satisfies Poisson’s condition, λ = µ, the first
few eigenvalues are given in Fig. 27. Given values for κn,m, the values for ωn,m and αn,m are determined
from (87) and (88).

m κn,m a/π Cn,m

1 0.840296489389027 -0.375375159272393

2 1.54866444711667 -0.0798905931500425

3 2.65126525857435 0.0464019111586348

Fig. 27. First few roots of the frequency equation for spheroidal vibrations, n = 2 with λ = µ. The spherical harmonics are

related by χn = Cn,mζn.

An overlapping grid for the sphere, shown in Fig. 28, is defined by four component grids. A spherical shell
defined with spherical polar coordinates is used as a body fitted grid over most of the sphere. The polar
regions are covered with orthographic patches while a Cartesian grid occupies the interior of the sphere. To
be more precise, define the spherical polar grid by

S ([ρa, ρb] × [θa, θb] × [φa, φb], N1, N2, N3) =
{
(ρi1 cos θi2 sinφi3 , ρi1 sin θi2 sinφi3 , ρi1 cosφi3)

∣∣

ρi1 = ρa + i1(ρb − ρa)/N1, θi2 = θa + i2(θb − θa)/N2, φi3 = φa + i3(φb − φa)/N3,

iα = 0, 1, . . . , Nα, α = 1, 2, 3
}
.

(89)

The cap grids are orthographic grids given by equation (79). The grid for the solid sphere, with resolution
factor j, is composed of the box, sphere and two orthographic grids,

G(j)
ss = B

(
[−xa, xa]3, Nx(j), Nx(j), Nx(j)

)
∪ S ([Ra, Rb] × [0, 2π] × [.2π, .8π], Nr(j), Nθ(j), Nφ(j))

∪ O±1 ([Ra, Rb], Sa, Sa, Nr(j), N0(j), N0(j)) ,

where hj = 1/(10j), Ra = .75, Rb = 1, xa = Ra + 1.5hj , Nx(j) = b2xa/hjc, Nr(j) = b(RB −Ra)/hj + 1.5c,
Nθ(j) = b2π(.7Rb)/hj +1.5c, Nφ(j) = b(.6)(.85)π/hj +1.5c, Sa = .65+hj , and N0(j) = b(.7)Saπ(.7Rb)/hj +
1.5c.

Fig. 28. Vibrational mode of an elastic sphere. Left: overlapping grid for a solid sphere consisting of two orthographic patches,
a spherical polar shell and an interior Cartesian grid (not shown). Middle to right: the deformed sphere at times t = 0, t = 0.8

and t = 1.2, scaling the displacement by a factor of 0.08.

Fig. 29 shows the maximum errors and convergence rates for vibrational mode with n = 2 and m = 1.
We choose the amplitude A in equation (86) as A = 50/a so that the maximum displacements are about
1. From the figure we see that the solutions from the SOS-C and FOS-G schemes are converging at a rate
close to 2.
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SOS-C FOS-G

Grid G(j) hj e
(j)
u r e

(j)
u r e

(j)
v r e

(j)
σ r

G
(1)
ss 1/10 1.3 × 10−1 5.1 × 10−2 1.2 × 10−1 2.6 × 10−1

G
(2)
ss 1/20 4.0 × 10−2 3.2 1.2 × 10−2 4.2 3.0 × 10−2 4.0 5.1 × 10−2 5.1

G
(4)
ss 1/40 10.0 × 10−3 4.0 2.4 × 10−3 5.1 7.1 × 10−3 4.2 8.6 × 10−3 6.0

G
(8)
ss 1/80 2.4 × 10−3 4.1 5.2 × 10−4 4.6 1.7 × 10−3 4.1 2.0 × 10−3 4.3

rate 1.93 2.22 2.03 2.37

Fig. 29. Maximum errors and estimated convergence rates for computing a vibrational mode of a solid sphere.

8.7. Diffraction of a p-wave “shock” by a cylindrical cavity

To illustrate the use of adaptive mesh refinement we consider the diffraction of a p-wave “shock” by a
cylindrical void. The initial conditions are taken from an exact traveling wave solution for a p-wave with a
piecewise constant velocity profile given by

u(ξ) =

{
−ξ v0/cp κ for ξ < 0,

0 for ξ > 0
, v(ξ) =

{
v0 κ for ξ < 0,

0 for ξ > 0,
,

ξ = κ · (x − x0) − cpt, cp =
√

(λ+ 2µ)/ρ0,

where κ defines the direction of propagation of the wave and x0 defines its position at t = 0. For the
computations presented we take κ = [1, 0]T , v0 = cp, x0 = [−1.25, 0]T , λ = 1 and µ = 1. The composite
grid for this diffraction computation is defined from a background square and annular grid (see Section 8.2
for definitions of the square and annular grids)

G(j)
d = R([−3, 3]2, Nx(j), Nx(j)) ∪ A([R,R+ 7∆s(j)], Nθ(j), Nr),

where ∆s(j) = 1/(10j), R = .5, Nx(j) = b6/∆s(j) + 1.5c, Nθ(j) = b2π(R + 3.5∆s(j))/∆s(j) + 1.5c, and
Nr = 7.

Figure 30 shows results from an AMR computation of a traveling p-wave diffracting around a cylindrical
cavity computed with FOS-G. The boundary condition on the cylinder is zero traction. The boundary
conditions on the top and bottom of the square are slip-walls. One refinement level of refinement factor 4
was used. The p-wave shock hits the circular void causing cylindrical p- and s-wave reflected waves.

Figure 31 compares the results at time t = 1.6 for four cases: coarse grid with FOS-G and no AMR, fine
grid with FOS-G and no AMR, SOS-C with AMR and FOS-G with AMR. The results from the computations
all generally agree with the finer grids providing a a sharper representation of the discontinuous parts of the
solution. The FOS-G results for the speed, |v|, are not as noisy as the SOS-C results. Note, however, that
the velocity is directly computed by FOS-G while for the SOS-C scheme it is computed in a post-processing
step by a finite difference approximation in time, vn

i = (un
i − un−1

i )/∆t.

8.8. Performance

In this section we present some computer timimg results for the two approaches. Note that in two dimen-
sions SOS-C has 2 dependent variables compared to FOS-G which has 6. In three-dimensions SOS-C has 3
variables compared to FOS-G which has 15. A moderate attempt was made to optimized each code although
further work would help. The FOS-G approximation, for example, currently computes all the components
of the stress tensor which results in extra work since the tensor is symmetric.

Fig. 32 gives CPU timings for the three-dimensional computation of a vibrational mode of a sphere

described in Section 8.6. The overlapping grid for this case was G(20)
ss with approximately 34 million grid

points. The overlapping grid has four component grids with the majority of the grid points (32 million)
belonging to the Cartesian grid. For this grid there were 1.1 million overlapping grid interpolation points.
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0.0

|v|

Fig. 30. Diffraction of a p-wave by a cylindrical cavity computed using AMR. Speed at times t = 0, t = 0.8 and t = 1.6

(FOS-G). The boundaries of the base overlapping grids are shown in blue and the boundaries of the refinement grids in green.

The deformed grid is shown, scaling the displacement by a factor of 0.075.

2.4

0.0

|v|

Coarse-grid Fine-grid

SOS-C with AMR FOS-G with AMR

Fig. 31. Diffraction of a p-wave by a cylindrical cavity at time t = 1.6 computed with and without AMR. (a) coarse-grid,

no-amr G(8), (b) fine-grid, no-amr G(64) (14.4M pts), (c) SOS-C with AMR G(8), l = 2, r = 4, (d) FOS-G with AMR G(8),
l = 2, r = 4. The boundaries of the base grids are shown in blue and the boundaries of the refinement grids in green. The

deformed grid is shown, scaling the displacement by a factor of 0.075.

Both codes have been optimized for the Cartesian grid case. The Cartesian grid discretization is significantly
faster than the curvilinear approximation. (number here ??) The computation was run in parallel on 16
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processors (4 nodes, 4 processors/node), using 2.4Ghz AMD Opteron processors with 16Gb per node. The
times reported are the averaged values of the different processors. In the figure, the row label “advance”
denotes the time spent advancing the interior equations (performed in the optimized Fortran routines) and
does not include communication costs. The row labeled “interpolation” includes the cost for overlapping
grid interpolation as well as updating the two layers of parallel ghost values.

From the SOS-C results one notes that the application of the sixth-order filter is relatively expensive
(20% of the total time) compared to advancing the interior equations (45%). This is not surprising given
that the filter is applied in two stages and requires a separate parallel ghost boundary update. In addition
the majority of grid points are Cartesian where the discretization of the elasticity equations requires few
operations. The interpolation and parallel ghost update is also relatively expensive at 20%. The parallel
load balancer does not currently take the work required for interpolation into account and as a result the
computation is not ideally balanced.

For the FOS-G scheme, approximately 67% of the time was spent advancing the interior equations. The
FOS-G scheme, however, requires significantly more operations that the SOS-C scheme. Per time step, the
FOS-G scheme was about 24.9/2.8 = 8.9 times slower than the SOS-C scheme. In addition, the time-step for
the FOS-G scheme was smaller than that for SOS-C by a factor of approximately 1/

√
3 ≈ 0.6. This resulted

in the SOS-C scheme being overall about 15.6 times faster than the FOS-G code. The SOS-C scheme used
about one-third of the memory of the FOS-G scheme (0.6 Gb of memory per processor compared to 1.8
Gb).

Although more expensive in computational time and memory, we note that that the FOS-G method
generally provides more accurate results than the SOS-C scheme. The FOS-G solution on a coarse grid may
be more accurate than the SOS-C scheme on a finer grid. Note that in three-dimensions the simulation time
will roughly increase by a factor of 16 when the mesh spacing is decreased by a factor of 2. Thus even if the
FOS-G scheme is 16 times slower (as with our current implementations), it still may be the better choice if
it is more than 4 times more accurate.

Vibration of a Sphere (3D)

SOS-C FOS-G

total (s) s/step % total (s) s/step %

advance 90 1.3 45 2005 16.9 67.

boundary conditions 15 .22 7 51 .42 1.7

interpolation 41 .60 20 876 7.4 29.

filter 40 .58 20 0 0. 0.

other 5 .10 8 30 .18 2.3

total 190 2.8 100 2962 24.9 100

Fig. 32. CPU time (in seconds) for various parts of the code and their percentage of the total CPU time per step. Results for

the vibrational modes of a sphere, grid G
(20)
ss with approximately 34 million grid points. The computation was run in parallel

on 16 processors. The cost for parallel communication is included in the row labeled “interpolation”.

8.9. Three-dimensional circular plate with holes

As a final example, we consider an elastic disturbance propagating in a three-dimensional circular plate
with holes, see Fig. 33. Without holes, the circular plate would occupy the domain Ωp = {(x, y, z)

∣∣ x2+y2 ≤
Rp, 0 ≤ z ≤ W} with outer radius Rp = 4 and thickness W = 0.25. Twenty-four small holes of radius 0.3
are located on equally spaced angles, θm = 15mo, m = 0, 1, . . . , 23 with centers on a radius of r = 3.4.
Twelve larger holes of radius 0.4 are equally spaced on angles θm = (30m+ 15)o, m = 0, 1, . . . , 11, centered

on a radius of r = 2.25. Let G(j)
p denote the overlapping grid for this domain where the grid spacing is

approximately equal to ∆s(j) = 1/(10j).
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Traction boundary conditions (6) are given on all boundaries. The initial conditions are zero and define
a plate at rest. A time-dependent traction forcing, n · τ = gt, is applied on the top surface at z = W . The
forcing acts to first push down on the plate and then pull up and is defined by

gt(x, y,W, t) = −ê3 g(t) exp(−20(x2 + y2)), ê3 = [0, 0, 1]T ,

g(t) =

{
(p+ 1) 22p+3 tp (1 − t)p( 1

2 − t), 0 ≤ t ≤ 1,

0, otherwise,

where p is chosen to be 3 so that the forcing turns smoothly on and off. Note that the integral of g from
from 0 to 1

2 is 1 and the integral from 0 to 1 is zero. The material and elastic parameters are ρ0 = 1, λ = 1
and µ = 1.

Fig. 33 shows a coarsened version of the overlapping grid along with the evolution of the surface displace-
ment. The disturbance is seen to propagate from the center of the plate outward. It diffracts and reflects
first off the inner ring of larger holes and then the outer ring of smaller holes.

The solutions from the SOS-C and FOS-G schemes are compared in Fig. 35 at time t = 3.0 for the grid

G(8)
p . Contours of the displacement norm, |u| are shown on the plane z = W/2. The results from the two

schemes are nearly indistinguishable.
Given a sequence of three grids of increasing resolution, a posteriori estimates of the errors and convergence

rates can be computed using the procedure described in [2]. These self-convergence estimates assume that
the numerical results are converging to some limiting solution. The a posteriori estimates are given in Fig. 34

for grids G(j)
p with j = 4, 8, 16. The finest grid, G(16)

p , has about 42 million active grid points. The estimated
convergence rates for the maximum errors are close to the expected value of 2 The corresponding discrete
L2-norm convergence rates are estimated to be 2.0 (to two significant figures) in all cases.

9. Conclusions

We have compared two approaches for solving the linear elastodynamic equations on overlapping grids. The
SOS-C method solves the equations written as a second-order-system for the displacement using a second-
order accurate conservative finite-difference approximation while the FOS-G scheme solves the first-order-
system for the displacement, velocity and stress using a second-order accurate characteristic-based Godunov
approach. Both methods were shown to be second-order accurate on a number of two- and three-dimensional
test problems including a deforming annulus and deforming solid sphere where the exact solutions are known.
A posteriori error estimates were determined for a complex example involving a three-dimensional circular
plate with holes. In general the FOS-G approach provided more accurate results but was more expensive
that the SOS-C scheme.

Our numerical scheme uses block-structured adaptive mesh refinement to dynamically add refinement
grids where more accuracy is required. The AMR technique was illustrated in the computation of a p-wave
“shock” hitting a cylindrical void.

An analysis of the scalar wave equation in second-order and first-order form on an overlapping grid showed
that non-dissipative schemes (that are stable on a single grid) may have unstable modes on overlapping grids
with growth rates proportional to the inverse of the mesh spacing. These unstable modes are generated by
waves that become trapped in the region between an overlap and a nearby boundary. This instability
also appears in the full elastic equations. A particularly difficult situation occurs with traction boundary
conditions and the second-order-system when the ratio of λ/µ is large. In this case the SOS-C scheme can be
effectively stabilized by the addition of an appropriate artificial dissipation or high-order filter. A sixth-order
filter was shown to be a good choice. The upwinding properties of FOS-G, on the other hand, naturally
stabilized the first-order-system scheme.

In future work we will consider material interfaces, variable material coefficients, high-order accurate
methods and extensions of the equations to large deformations. The approach will also be used in the
context of fluid-structure interaction problems.
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t = 2.0

t = 2.5 t = 3.0

t = 3.5 t = 4.0

Fig. 33. Elastic waves in a three-dimensional circular plate with holes, composite grid (coarsened) and surface displacement at

selected times. The deformed surface is shown with the displacement scaled by a factor of 3.
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